Chilled Water Plant Assessment & Criteria Design

Prepared for:

Cleveland Airport System

November 14, 2016

PREPARED BY:

1100 Superior Avenue Cleveland, Ohio 44114 (216)681-2020

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	1
Study Scope of Work	2
Overview	3
Existing Conditions	4
Evaluation	7
Recommendations & Design Criteria	9
Operating and Maintenance Savings	10
Probable Construction Cost Estimate	

Executive Summary

Osborn Engineering Company was requested by Delta Airport Consultants and Cleveland Airport System to evaluate the condition and remaining useful service life of the central cooling plant.

Although the central cooling plant equipment and controls have been well maintained, the original (1978) chillers and pumps are well beyond their expected useful service life of 23 years (2001). The chillers added (1999 and 2001) after the initial building construction/renovation are also nearing the end of their service life. The overall estimated construction and project costs for the first phase system replacement is \$5,300,000. The overall project cost includes the following soft costs: 10% for Profit; 10% for General Conditions; 10% for Design Contingency; 10% for Construction Contingency; 7% for Engineering Fees; 5% for Construction Manager and 1.5% for Commissioning. We allowed for 2 years to allocate funding and complete design documents for the plant replacement when calculating construction cost escalation. Average energy savings are estimated to be approximately \$ 100,000 per year for the new central plant. After our interviews with the CHIA engineering and maintenance staff and analysis of the age and condition of the plant equipment, it became evident that the best course of action would be a complete chiller plant replacement undertaken as a two-phase project over several years. One chiller, the 750 nominal ton Trane centrifugal chiller tagged CH-2 was deemed to be usable and would be retained for use for the near future. In Phase 1 of the project we recommend replacement of the balance of the chillers, pumps and cooling towers comprising the chilled water plant. Existing CH-2 would remain in place and be incorporated into the new plant to operate as one of three total chillers and be replaced later in Phase 2 when it's useful life ends. This would provide an N+1 configuration where two of the three chillers would be capable of satisfying the current peak chilled water demand and a third chiller would be available as redundant back up.

Phase 1

We recommend the following scope for the replacement:

- Replace (3) existing chillers (chillers currently identified as CH-1, CH-3 and CH-4) with (2) new 750 nominal ton centrifugal water cooled chillers.
- Replace seven (7) primary chilled and eight (8) condenser water pumps with new.
- Replace (6) existing cooling towers with (6) new all stainless steel / non-ferrous construction crossflow 475 nominal ton cooling towers.
- Replace and reconfigure the bulk of the chilled water supply and return piping comprising the chilled water plant.
- Replace two (2) approximately 2000 gpm variable speed secondary chilled water pumps.
- Maintain existing CH-2 (the existing Trane 750 ton chiller) for re-use during Phase 1.
- Upgrade / replace control devices (flow meters, control valves, sensors) associated with the chilled water plant with new BACnet compatible devices and tie into the existing Siemens Apogee Building Automation System.

Phase 2

Replace existing chiller #2 in 5 to 8 years (planned) or sooner if any significant refrigerant / oil related problems develop.

Study Scope of Work

Osborn Engineering Company was requested to evaluate the condition and remaining useful service life of the central chilled water plant. The scope of work included:

- Field verification of the chiller and condenser water piping systems to generate an accurate flow diagram of the existing configuration of each. This will identify location and sizes of existing pumps, valves, strainers and other key system components.
- Development of a plan and direction for the detailed chilled water plant design including recommendations for refrigerant utilized by the new plant equipment.
- Determination of system configuration and overall preliminary system capacity. (Final system capacity to be determined during the future detailed design portion of this project when a detailed analysis of run data and load calculations can be performed.)
- Visual inspection and recommendations for structural improvements/modifications necessary during the replacement of the cooling towers.
- Preparation of Design Criteria for owner's use to procure the design services for the detailed design and REVIT modeling of construction documents for the replacement of the Chilled Water Plant for the Main Terminal at Hopkins International Airport.

This report is based upon our review of the existing available drawings of the mechanical systems and inspection of the facilities including identified mechanical equipment. The inspection services were limited to a visual survey of existing conditions and exclude both non-destructive and destructive testing. This type of inspection does not clearly reveal all defects and requires certain engineering assumptions be made to establish condition. These assumptions cannot always be verified without extensive testing, some of which can be destructive. Therefore, this report is not to be considered a guarantee of the exact condition, life and total extent of potential repairs of the facilities inspected.

Osborn Engineering does not have control over the cost of labor, materials, or equipment, or Contractor's methods of determining prices, or over competitive bidding, market, or negotiating conditions. Accordingly, Osborn Engineering does not warrant or represent that bids or negotiated prices will not vary from any estimate or evaluation prepared, or agreed to, by Osborn Engineering.

Overview

Cleveland Hopkins International Airport (CLE) is located just 12 miles southwest of downtown Cleveland and is currently Ohio's busiest airport, serving more than 9 million passengers annually. CLE was the nation's first municipal airport when it initially opened in 1925, and has a long history of leadership in

implementing new airport technology. These innovations include the world's first radio-equipped air traffic control tower and the nation's first airfield lighting system. CLE was also the first airport in the nation to have a rail connection (added 1968) to allow in travelers to take commuter rail to/from the airport.

Today, CLE has two parallel runways at 10,000 and 9,000 feet in length as well as a 6,000 foot crosswind runway. It is the 32nd busiest airport in total flights and 43rd busiest in number of passengers in the nation, handling approximately 200,000 take-offs and landings annually. It covers approximately 1402 acres and includes the main terminal and four concourses (A thru D). Concourse A was the first of the airport's original two concourses and was built in 1962, with a major renovation in 1978. Concourse B was built in 1966 and underwent renovations in 1982. Concourse C was added in 1968 and renovated in 1992. Finally, concourse D was added in 1999 to complete the airport's current configuration.

The Central Chilled Water Plant, that is the subject of this study, is located in the main penthouse level

mechanical room above the main terminal area of the Airport. This is a critical building system for the function of airport activities as it produces all the mechanical cooling for the main terminal including all ticketing/check-in, baggage claim areas, food court and Concourses A and B.

Existing Conditions

The Central Chilled Water Plant as it is currently configured, consists of three water-cooled centrifugal chillers and one water-cooled rotary (screw) chiller. Their nominal capacities are 750 (CH-2), 500 (CH-3),

500 (CH-4) and 250 (CH-1) tons respectively giving the total plant a nominal capacity of 2000 tons. Heat rejection for the chillers is provided by six individual crossflow, induced draft cooling towers nominally sized at 400 tons each. This arrangement

provides for a level of redundancy and a

Figure 1: CH-3 and 1 (from left to right)

total of 2,400 connected tons of heat rejection. The current chilled water plant was initially installed during the 1978 renovations to the main terminal and initially consisted of the two 500 ton chillers and the cooling towers as listed above. The chilled and condenser water piping system has been modified several times in the past, most notably with the addition of the 750 ton chiller in approximately 2001. The 250 ton chiller was initially installed during 1999 as part of a baggage handling expansion project for Continental Airlines and was not initially part of the central chilled water plant. The piping and building automation system was modified about two years ago to tie this chiller into the central plant system to allow it to help carry the cooling loads. Documentation for all of these system modifications was incomplete or unable to be located. Therefore, as part of this study, Osborn Engineering created a one line flow schematic of the Central Chilled Water Plant piping and equipment that is provided for reference later in this report.

The condenser water piping system is made up of eight condenser water pumps and six individual cooling towers that are roughly configured into a North and South side that nearly mirror each other. Each "side" is made up of three cooling towers and four pumps piped together in a common header (three pumps run paired with a cooling tower and the fourth serves as redundant back-up). Each side ties together into a common header that feeds water to all the chillers. In practice it is

Figure 2: South Condenser Water Pumps

operated so that the South cooling towers operate in conjunction with CH-1, 3 and 4 and the North cooling towers operate with CH-2.

The chilled water piping is currently configured in a very non-traditional layout. The largest chiller is currently identified as CH-2 and is the 750 ton Trane chiller that was installed in about 2001. There are two chilled water pumps configured lead-lag (tagged P-11 & P-12) that draw water thru this chiller and pump it into a chilled water supply pipe header that feeds to the suction side of the system load pumps (P-16 & P-17). Common industry practice is to pump water through

Figure 3: Pumps P-11 and P-12 serve CH-2

chillers not draw the water through them. (The pumps add a small amount of heat to the chilled water) The two 500 nominal ton chillers (CH-3 and CH-4 installed in 1978) are served by a three pump package

Figure 3: Pumps P-13, P-14 and P-15

(P-13, 14 & 15) that is configured so that P-13 is paired with one chiller and P-15 with the other. P-14 is on a common header with the other two and serves as back-up for either chiller. These chillers and pumps are also piped so the water is drawn through the chillers and then flows in series to the suction of pumps P-16 and P-17. CH-3 is currently being repaired from damage suffered during last winter. The condenser water barrel froze and damaged the tubes. Fortunately, the

refrigeration system was not affected by this freeze. The last chiller (CH-1, the 250 nominal ton screw machine) was added into the system a few years ago and is piped to draw water out of the chilled water

return header and pump it through chiller 1. It is served by two chilled water pumps in lead/lag configuration and this chiller also has its own lead/lag condenser water pumps. There are also a number of control valves and bypass connections in the chilled water supply and return lines serving this chiller. Lastly, this chiller has its pumps pushing the water through the evaporator barrel, not drawing it through the chiller as all the other chillers are configured. Chiller #1 is also currently being

Figure 5: CH-1 and its Pumps

repaired from damage suffered last winter when its condenser barrel froze and damaged the barrel, tubes and refrigeration system.

Record drawings for the system are incomplete/inaccurate and some modifications to the system have been made where the design and as-built documents are no longer available.

The chilled water plant is controlled by a Siemens Apogee Building Automation System (BAS). The headend and system interface have been upgraded over the years and are up-to-date and capable of controlling a new chilled water plant. The existing sensors, flow meters, control valves and other control

devices have been in service since their initial installation and in need of replacement. The BAS utilizes a graphical user interface that indicates system set-points, temperatures, flow information and equipment run status and alarms. This user interface could

be modified to be Figure 6: Control System interface for chillers.

utilized in a similar, familiar format to control and operate a modified chilled water plant.

Figure 7: Control System interface for North Cooling Towers and condenser pumps.

Evaluation

The majority of the equipment making up the main chilled water plant is significantly past the median life expectancy as predicted by ASHRAE. The median life expectancy for centrifugal water cooled chillers is 23 years. Chiller #2 (the 750 ton machine) is serving in its 15th year, chillers #3 and #4 (the two 500 nominal ton machines) are in their 38th year of operation and chiller #1 (the 250 ton machine originally installed in 1999) is in its 17th year of operation. The condenser water pumps and the chilled water pumps serving CH-3 and 4 all appear to be original from 1978. The chilled water pumps serving CH-2 appear to have been installed in conjunction with the installation of that chiller and the chilled water and condenser water pumps serving CH-1 were installed with that chiller in 1999. The cooling towers appear to have been replaced or at minimum have had the fill replaced at some point in the past. They are all showing signs that at a minimum the fill is in need of replacement, the hot water basins are leaking and have previously been identified as needing to be replaced or have a major refurbishment performed. ASHRAE

ASHRAE Equipment Life Expectancy chart

A SHRAE is the industry organization that sets the standards and guidelines for most all HVAC-R equipment. For additional info about A SHRAE the website is <u>www.ashrae.org</u>.

Equipment Item	Median Years	Equipment Item	Median Years	Equipment Item	Median Years
Air conditioners		Air terminals		Air-cooled condensers	20
Window unit Residential single or Split	10	Diffusers, grilles, and registe Induction and fan coil units	rs 27 20	Evaporative condensers	20
Package Commercial through-the wall	15	VAV and double-duct boxes	20	Insulation	
Water-cooled package	15	Air washers	17	Molded Blanket	20 24
Heat Pumps		Ductwork	30		
Residential air-to-air Commercial air-to-air Commercial water-to-air	15 15 19	Dampers	20	Pumps Base-mounted Pipe-mounted	<mark>20</mark> 10
Roof-top air conditioners		Centrifugal	25	Sump and well Condensate 15	10
Single-zone Multi-zone	15 15	Propeller Ventilating roof-mounted	15 20	Reciprocating engines	20
Boilers, hot water (steam)		0.1		Steam turbines	30
Steel water-tube Steel fire-tube	24 (30) 25 (25)	DX, water, or steam	20	Electric motors	18
Cast Iron Electric	35 (30) 15	Electric	15	Motor starters	17
		Heat Exchangers		Electric transformers	30
Burners	21	Shell-and-tube	24	Electric randionners	00
Furnaces		Reciprocating compressors	20	Controls	
Gas- or oil-fired	18	recipiocaling compressors	20	Pneumatic	20
Linit hostore		Packaged chillers		Electronic	15
	10	Reciprocating	20	Value estuatore	
Hot water or steam	20	Absorption	23	valve actuators	15
Radiant Heaters		Cooling towers		Pneumatic	20
Electric	10		20	Self-contained	10
Hot water or steam	25	Wood Ceramic	20 20 34		

indicates the median life expectancy for cooling towers and base mounted pumps to be 20 years. (See Table 1)

For the chillers, there is another important factor to consider. Federal Law regulates the production and use of refrigerants utilized by HVAC equipment to prevent greenhouse gas emissions and limit Global Warming. The four existing chillers utilize three different refrigerants. One of the two oldest chillers (the two 500 ton machines) still utilizes R-11 and the other was refitted at some point in the past to operate on R-123 (when initially installed it

Table 1: ASHRAE Equipment Life Expectancy Chart

operated on R-11). R-11 is a refrigerant that is no longer available and was phased out of production in 2010. It is likely that there was a repair required for this chiller in the past where the scarcity and cost of R-11 made it a better option to convert the machine to use R-123 instead. One problem with this solution is that the chiller is de-rated by approximately 10% (chiller peak capacity is reduced from 500 tons in this case to about 450 tons) by this conversion to an alternate refrigerant. The newest chiller (the 750 ton

model) uses R-123 and the smaller 250 ton machine uses R-22. R-123 and R-22 are both HCFC (Hydrochlorofluorocarbon) refrigerants that by EPA regulation are to be phased out in 2020. At that point, manufacturers will no longer be able to manufacture new refrigerant and must use only recycled refrigerant to maintain operation of equipment already in use. Also beginning in 2020, no new refrigeration equipment can be manufactured or sold using either R-123 or R-22. In advance of the phase out, chiller manufacturers have already begun changing refrigerants utilized to more environmentally friendly options. Additionally, the cost of R-22 and R-123 has already begun to increase substantially over the past few years. Using the past as a guide with the CFC (Chlorofluorocarbon) refrigerants phased out in 2010, the cost of the next group being phased out in 2020 can be expected to increase dramatically in the next few years. The Cooling Towers were noted by Gardiner Service (the Airport's service vendor) as having leaking hot water basins and the fill is beginning to fail. They have already provided a proposal for a major cooling tower refurbishment and recommend this work be done in the near future.

Reasons for a complete or phased replacement of the chiller plant include:

- Chillers CH-3 and CH-4, all the cooling towers and the associated pumps are well beyond their useful service life.
- CH-1 and CH-2, while still in running condition with life expectancy remaining, must be planned for replacement due to their refrigerants. These units are beyond their mid-point of operational life so a simple refrigerant replacement to extend service life would not be cost effective. Maintenance costs typically accelerate during the last third of equipment's useful life, but costs for these machines will accelerate even faster due to the rising cost of refrigerant associated with the phase out of R-123 and R-22.
- The chilled water plant operated for all the summer of 2016 with 1250 nominal tons of cooling carrying the building load (Chillers 2 and 4). Plant operations personnel indicated that on days where the outside temperature met or exceeded 90°F, they would need to pre-cool the building so the system could keep up with the load during the late afternoon hours. This is a strong indicator that the plant load is slightly above 1250 tons. For means of comparison, ASHRAE 1% cooling design conditions for Cleveland are 91°F dry bulb, 83°F wet bulb. For this past summer with chillers 1 and 3 off-line undergoing repairs, the system operated with no redundancy in the event of an equipment failure.
- The existing plant equipment and control is not as energy efficient as new chillers with optimized control. The plant efficiency is further degraded by the multiple piping modifications made over the years and the conversion of CH-3 from R-11 to R-123.
- The existing controllers, sensors and control valves are obsolete and in need of replacement.

Recommendations & Design Criteria

- 1. Replace chillers 1, 3 and 4. We recommend replacing these three chillers during phase 1 with two new 600 to 750 ton oil-less bearing centrifugal chillers. Oil-less bearing chillers offer substantial long term advantages over traditional oil lubricated machines through lower operation and maintenance activities and costs, as well as higher operating efficiency at partial loads. Planned replacement should be anticipated in approximately 2 to 4 years. Maintain existing Chiller #2 for use with the re-designed chiller plant and incorporate future connection points to allow replacement of this machine when age, maintenance costs and/or scarcity of R-123 refrigerant dictates its replacement. Planned replacement of Chiller #2 (with a new chiller matching the two phase 1 chillers) should be anticipated in approximately 5 to 8 years.
 - a. Engage a certified balance contractor to take water flow readings for each of the existing chillers and for the load side chilled water supply. Utilize load side flow data and system temperatures to finalize exact size of chillers to provide for N+1 chiller plant.
 - b. Reconfigure piping to improve system efficiency and allow for primary / secondary chilled water loops to be created with a hydraulic / air / dirt separator providing the bridge between the primary and secondary loops. For purposes of this study, we have not assessed the chilled water piping on the load side of the system beyond the supply side of the secondary chilled water pumps. Further evaluation of the chilled water piping in the space needs to be undertaken, as well as evaluation of the condition and remaining service life of the load-side equipment (air handlers, fan coils).
- 2. Perform a 3D laser scan of the mechanical room surrounding the system equipment and the roof area around the cooling towers and generate a 3D Revit model for new chiller plant. Generate new chiller plant design drawings in Revit and update model with as-built conditions at completion of the project. Turn this model over to Cleveland Airport System for incorporation into the overall Airport Revit model that has been started on other projects recently completed at CHIA.
- 3. Remove and replace the bulk of the chilled water piping and pumps in the mechanical room and create a primary / secondary arrangement in the chilled water piping to allow for greater control and plant efficiency. Provide new variable frequency drives (VFD) with all new pumps.
- 4. Remove and replace the condenser water piping and pumps to optimize pumping energy efficiency with the new chillers. Provide VFD's with all new pumps.
- 5. Replace the cooling towers with new towers of the same physical size to allow installation onto the existing structural steel with only minimal maintenance / repairs / modifications. During detailed design, evaluate increasing fan size for the towers to allow for lower condenser water supply temperatures to optimize chiller plant efficiency. Provide VFD's for speed control for each cooling tower. Remove paint from cooling tower structural steel, assess structure in detail and repair/replace any members showing excess corrosion and paint structure with zinc-rich paint.
- 6. Provide new flow and temperature sensors for each chiller and both the primary and secondary chilled water loops as well as the condenser water north and south piping loops. Upgrade Siemens BAS to efficiently control all aspects of the chiller plant operation including varying number of chillers and cooling towers operating to match load conditions, varying primary chilled water pump flow, cooling tower fan(s) / speed(s), condenser water system flow and system temperatures.

Operating and Maintenance Savings

Operating Costs

BASELINE - EXISTING

\$189,794	\$/year, average annual electricity cost
\$0.060	\$/kWh, electricity rate - 2016 CEI
3,163,236	kWh per year, average annual electricity consumption
1.25	efficiency
1 20	kW/ton, average annual plant
0.124	kW per ton, condenser water pump average annual efficiency
0.149	kW per ton, cooling tower fan average annual efficiency
0.124	kW per ton, secondary chilled water pump average annual efficience
0.093	kW per ton, primary chilled water pump average annual efficiency
0.80	kW per ton, chiller average annual efficiency
2,450,000	ton-hours, estimated annual chilled water consumption
1,750	EFLH, equivalent full load hours
1,400	tons, peak chilled water demand

PROPOSED

2,450,000	ton-hours, estimated annual chilled water consumption					
0.31	kW per ton, chiller average annual efficiency					
0.062	kW per ton, primary chilled water pump average annual efficiency					
0.076	kW per ton, secondary chilled water pump average annual efficiency					
0.064	kW per ton, cooling tower fan average annual efficiency					
0.099	kW per ton, condenser water pump average annual efficiency					
0.61	kW/ton, average annual plant					
0.01	efficiency					
1,487,050	kWh per year, average annual electricity consumption					
\$0.060	\$/kWh, electricity rate - 2016 CEI					
\$89,223	\$/year, average annual electricity cost					

\$100,571 \$/year, average annual electricity cost savings

Maintenance Costs (Comparison of Oil-Less to Standard Centrifugal Chillers)

		0	il-L	ess Chille	ers			S					
	C	Chillers		Annual	Ma	Maintenance		Chillers	Annual		Ma	intenance	
Year		PM\$	Οι	itsource \$		Total \$		PM\$ Outsource\$		5	Total \$	Savings	
1	\$	8,125	\$	-	\$	8,125	\$	10,500	\$	-	\$	10,500	\$ (2,375)
2	\$	8,125	\$	8,125	\$	16,250	\$	10,500	\$	10,500	\$	21,000	\$ (4,750)
3	\$	8,125	\$	8,125	\$	16,250	\$	10,500	\$	10,500	\$	21,000	\$ (4,750)
4	\$	8,125	\$	8,125	\$	16,250	\$	10,500	\$	10,500	\$	21,000	\$ (4,750)
5	\$	8,125	\$	8,125	\$	16,250	\$	10,500	\$	10,500	\$	21,000	\$ (4,750)
6	\$	8,875	\$	15,531	\$	24,406	\$	11,500	\$	20,125	\$	31,625	\$ (7,219)
7	\$	8,875	\$	15,531	\$	24,406	\$	11,500	\$	20,125	\$	31,625	\$ (7,219)
8	\$	8,875	\$	15,531	\$	24,406	\$	11,500	\$	20,125	\$	31,625	\$ (7,219)
9	\$	8,875	\$	15,531	\$	24,406	\$	11,500	\$	20,125	\$	31,625	\$ (7,219)
10	\$	8,875	\$	15,531	\$	24,406	\$	11,500	\$	20,125	\$	31,625	\$ (7,219)
11	\$	10,500	\$	26,250	\$	36,750	\$	13,700	\$	34,250	\$	47,950	\$ (11,200)
12	\$	10,500	\$	26,250	\$	36,750	\$	13,700	\$	34,250	\$	47,950	\$ (11,200)
13	\$	10,500	\$	26,250	\$	36,750	\$	13,700	\$	34,250	\$	47,950	\$ (11,200)
14	\$	10,500	\$	26,250	\$	36,750	\$	13,700	\$	34,250	\$	47,950	\$ (11,200)
15	\$	10,500	\$	26,250	\$	36,750	\$	13,700	\$	34,250	\$	47,950	\$ (11,200)
16	\$	14,400	\$	46,800	\$	61,200	\$	18,700	\$	60,775	\$	79,475	\$ (18,275)
17	\$	14,400	\$	46,800	\$	61,200	\$	18,700	\$	60,775	\$	79,475	\$ (18,275)
18	\$	14,400	\$	46,800	\$	61,200	\$	18,700	\$	60,775	\$	79,475	\$ (18,275)
19	\$	14,400	\$	46,800	\$	61,200	\$	18,700	\$	60,775	\$	79,475	\$ (18,275)
20	\$	14,400	\$	46,800	\$	61,200	\$	18,700	\$	60,775	\$	79,475	\$ (18,275)
	\$	209,500	\$	475,406	\$	684,906	\$	272,000	\$	617,750	\$	889,750	\$ (204,844)

Maintenance Costs

The operating efficiency of oil-less (magnetic bearing in this example) chillers is better at part load conditions than standard design chillers (Integrated Part Load Value of about .305kW/T compared to .343kW/T). Total plant annual energy savings anticipated based on 2016 electric rates:

2,450,000 Ton Hours x (.343-.305 kW/Th) x 0.06 \$/KWH = \$ 5,586.00 savings per year

The probable premium cost for oil-less over standard chillers is approximately \$30,000. When operational savings is combined with anticipated maintenance savings, the simple payback of the premium cost would be realized in less than four years. Note that in the event the electric rate increases, payback would be realized even sooner.

Probable Construction Cost Estimate

	ORIGINA	TING OFFICE		DATE SUBM	ITTED	PROJECT NO.					CONTRACT NO.			
	Osborn E	Engineering			10/17/16	10/17/16 J20160465				.000				
ESTIMATE	PROJECT	AND CITY				PURPOSE				STUDY				
WORKSHEET	Cleveland	d Hopkins Interna	ational Airpo	rt	Opinion of Probable O				onstruction Cost					
	Chilled V	Nater Plant Stu	dy & Criteri	a Design		ITEM								
	Cleveland	d, Ohio				Summary by Sheet								
ESTIMATE VALID TO:		ESTIMATED B	BY: I	abor Rate:	PSLCF		Chil	lad	Mator Di	ant Dhasa 1				
06/30/17		JHP	\$ 75.00	1.15		Chil	leu	water Pla	ant r	mase 1				
			M	ATERIAL	L	ABOR								
				PER		PER		SU	JBTOTALS	ECCA		E	XTENDED	
DESCRIPTIO	ON OF WO	DRK		UNIT	SUBTOTAL	UNIT	SUBTOTAL							
COST SUMMARY BY SHEET														
Piping Demolition					9,100		61,903	\$	71,003	\$	99,231	\$	123,890	
Chilled Water Piping					189,959		180,916	\$	370,875	\$	518,317	\$	647,119	
Condenser Water Piping				_	409,071		394,803	Ş	803,874	Ş	1,123,454	Ş	1,402,632	
New Mechanical Equipment				_	1,218,390		82,283	Ş	1,300,673	Ş	1,817,755	Ş	2,269,467	
Subs (Electrical Testing & Palance	RAS Incul	ation Pigging)		-	33,750		33,750	Ş ¢	415 105	Ş	94,335	ې د	724 440	
	DAS, IIISUI	ation, Nigging)		-	201,413		215,780	Ş	415,195	ې د	560,250	ې د	724,449	
								\$	-	\$	-	\$		
		SUBTOTAL 1			2,061,685		967,435		\$3,029,120		\$4,233,347		\$5,285,333	
		PROFIT	10.0%						\$302,912					
		SUBTOTAL 2							\$3,332,032					
	GENERAL O	CONDITIONS	10.0%						\$333,203					
		SUBTOTAL 3							\$3,665,235					
ESCALATION TO MIDPO	INT OF COM	NSTRUCTION	5.0%						\$183,262					
		SUBTOTAL 4							\$3,848,497					
	DESIGN CC	ONTINGENCY	10.0%						\$384,850					
SUBTOTAL 5 - ECCA (Estimated Cons	truction Co	st at Award)							\$4,233,347	ECCA	1	\$	4,300,000	
CONSTR	UCTION CC	DNTINGENCY	10.0%						\$423,335					
SUBTOTAL 6 - ECC (Estima	ated Constr	ruction Cost)							\$4,656,681	ECC		\$	4,700,000	
	ENGIN	EERING FEES	7.0%						\$325,968					
CON	STRUCTIO	N MANAGER	5.0%						\$232,834					
	COM	MISSIONING	1.50%						\$69,850					
				TOTAL	PROJECT COST	\$	5,285,333							
					TOTAL PRO	JECT COST	ROUNDED UP	\$	5,300,000					

	ORIGINATING OFFICE		DATE SUBMITTED		10/17/2016		PROJECT NO.		CONTRACT NO.			
OSBORN	Osborn Engineering PROJECT AND CITY											
ESTIMATE								PURPOSE		STUDY		
WORKSHEET	Cleveland Hopkins International			Airport				Opinion of	Probable Constru	ction Cost		
	Chilled W	ed Water Plant Study & Crit		eria Design				ITEM				
	Cleveland	l, Ohio										
ESTIMATE VALID TO:		ESTIMATE	D BY:	LABOR RAT	E:	PSLCF			1			
06/30/17				\$ 75.00	/HR	1.15		SHEET	NO. 1	OF 1		
			QUA	NTITY	N	IATERIAL		LABO	R			
DESCRIPTIO	N OF WORK		NO.	UNIT	PER		от	HRS PER		SUBTOTALS	ECCA	Extended
			UNITS	MEAS.	UNIT	SUBTOTAL	(y/n)	UNIT	SUBTOTAL			
Demo	olition					0	n		0	\$-	\$-	\$ -
CHW Piping Demo			500.0	Lot	5.00	2500	n	0.267	11514	\$ 14,014	\$ 19,586	\$ 24,453
CW Piping Demo			660.0	Lot	5.00	3300	n	0.267	15199	\$ 18,499	\$ 25,853	\$ 32,278
Demo of Chillers			3.0	Ea	250.00	750	n	32.000	8280	\$ 9,030	\$ 12,620	\$ 15,756
Demo of Pumps			21.0	Ea	50.00	1050	n	8.000	14490	\$ 15,540	\$ 21,718	\$ 27,115
Demo Cooling Towers			6 .0	Ea	250.00	1500	n	24.000	12420	\$ 13,920	\$ 19,454	\$ 24,288
Subtotal						9100	n		61903	\$ 71,003	\$ 99,231	\$ 123,890
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$ -	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$-
						0	n		0	\$-	\$-	\$ -
						0	n		0	\$-	\$-	\$-
New Eq	uipment					0	n		0	\$-	\$-	\$ -
Chillers	750 ton		2.0	EA	235,000	470000	n	36.000	6210	\$ 476,210	\$ 665,527	\$ 830,911
Primary CHW Pump			4.0	EA	4,910	19640	n	18.000	6210	\$ 25,850	\$ 36,127	\$ 45,104
Secondary/Load CHW Pu	Imp		2.0	EA	12,360	24720	n	24.000	4140	\$ 28,860	\$ 40,333	\$ 50,356
CWPump			8.0	EA	4,760	38080	n	18.000	12420	\$ 50,500	\$ 70,576	\$ 88,114
16" Air/Dirt/Hydraulic S	eparator		1.0	EA	30,700	30700	n	16.000	1380	\$ 32,080	\$ 44,833	\$ 55,975
Primary CHW Pump - VFI	D		4.0	EA	11,000	44000	n	1.000	345	\$ 44,345	\$ 61,974	\$ 77,375
Secondary/Load CHW Pu	ımp - VFD		2.0	EA	18,000	36000	n	1.000	173	\$ 36,173	\$ 50,553	\$ 63,115
CW Pump - VFD			8.0	EA	11,000	88000	n	1.000	690	\$ 88,690	\$ 123,949	\$ 154,750
CW Expansion Tank w/ A	ir Fittings		2.0	EA	4,250	8500	n	12.000	2070	\$ 10,570	\$ 14,772	\$ 18,443
Basket Strainer - 14" Fla	nged		2.0	EA	31,000	62000	n	18.000	3105	> 65,105	> 90,987	> 113,598
Cooling Tower	475 ton		6.0	EA .	63,500	381000	n	48.000	24840	\$ 405,840	\$ 567,182	\$ 708,126
CHW Make Up Water Pip	ng Modifica	aons	1.0	Lot	2,000	2000	n	40.000	3450	\$ 5,450	\$ 7,617	\$ 9,509
chemical freatment syst	eminioas		1.0	LOC	3,500	3500	n	40.000	3450	\$ 6,950	\$ 9,713	\$ 12,127
CW Make Up Water Pipi	ng Mods		2.0	LOT	2,000	4000	n	40.000	6900	\$ 10,900	\$ 15,233	\$ 19,019
Subtotal						1212140	n		75383	\$ 1,287,523	\$ 1,799,377	\$ 2,246,522
						0	n		0	> -	> -	> -
						0	n		0	> -	> -	> -
						0	n 		0	ې - د	ې - د	> -
Definition	nitos 9 Ft					0	n 		0	ې - د	ې - د	> - ¢
Kerrigerant Mo	nicor & Exhau	ISL	1.0	En	2750.00	0	n 	40.000	0	> -	> -	> -
Exhaust ran			1.0	ca r-	2750.00	2/50	n	40.000	3450	÷ 6,200	÷ 8,665	> 10,818
Reinigetant Monitor & Co	mu'OIS		1.0	Ca)	3500.00	3500	n	40.000	3450	\$ 6,950	\$ 9,/13	\$ 12,127
Sub Total			1	1	I	6250	n	1	6900	\$ 13,150	\$ 18,378	\$ 22,945

	ORIGINA	TING OFFIC	CE	DATE SUB	MITTED	10/17/2016		PROJECT N	ю.	CONTRACT NO.			
OSBORN	Osborn	Engineerin	g										
ESTIMATE	PROJECT	and City						PURPOSE	SE STUDY				
WORKSHEET	Clevelan	d Hopkins In	ternational	Airport				Opinion of	Probable Constru	ction Cost			
	Chilled W	Vater Plant S	tudy & Crite	eria Design				ITEM					
	Clevelan	d, Ohio											
ESTIMATE VALID TO:		ESTIMATE	D BY:	LABOR RAT	E:	PSLCF							
06/30/17		JHP		\$ 75.00	/HR	1.15		SHEET	NO. 1	OF 1			
			QUA	NTITY	N	IATERIAL		LABOF	2				
DESCRIPTION	OF WORK		NO.	UNIT	PER		от	HRS PER		SUBTOTALS	ECCA	Extended	
			UNITS	MEAS.	UNIT	SUBTOTAL	(y/n)	UNIT	SUBTOTAL				
Riggi	ng					0	n		0	\$ -	\$-	\$-	
Stage Materials and Tools	to Roof		2.0	Crane Day	1,250.00	2500	n	36.000	6210	\$ 8,710	\$ 12,173	\$ 15,198	
Rig Down Old Equipment &	& Rig New I	nto Place	2.0	Crane Day	2,250.00	4500	n	80.000	13800	\$ 18,300	\$ 25,575	\$ 31,931	
Rig Down Demo'd Piping a	nd Misc		1.0	Crane Day	1250.00	1250	n	36.000	3105	\$ 4,355	\$ 6,086	\$ 7,599	
Rigging Su	b-Total					8250	n		23115	\$ 31,365	\$ 43.834	\$ 54,727	
						0	n		0	\$ -	\$ -	s -	
Building Aut	tomation					0	n		0	\$-	\$ -	\$ -	
Demo of existing			1.0	Lot	15000.00	15000	n		0	\$ 15,000	\$ 20,963	\$ 26,173	
Flow Meter			12.0	Ea	2300.00	27600	n		0	\$ 27,600	\$ 38,572	\$ 48,158	
Temperature Sensor			20.0	Ea	625.00	12500	n		0	\$ 12,500	\$ 17,469	\$ 21,811	
dP Sensor			20.0	Ea	935.00	18700	n		0	\$ 18.700	\$ 26.134	\$ 32.629	
Water Meter			5.0	Ea	1150.00	5750	n	1	0	\$ 5.750	\$ 8.036	\$ 10.033	
32 Point Controllers			3.0	Ea	5200.00	15600	n		0	\$ 15.600	\$ 21.802	\$ 27.220	
Eng Labor			96.0	Point	90.00	8640	n		0	\$ 8,640	\$ 12,075	\$ 15,075	
Prog & Start Up Labor			96.0	Point	115.00	11040	n	1	0	\$ 11,040	\$ 15,429	\$ 19,263	
Chiller Programming			3.0	Ea	1550.00	4650	n	1	0	\$ 4,650	\$ 6,499	\$ 8,114	
Tower Programming			6.0	Ea	550.00	3300	n		0	\$ 3,300	\$ 4,612	\$ 5,758	
Graphics Programming			1.0	Lot	3750.00	3750	n		0	\$ 3,750	\$ 5,241	\$ 6,543	
kW Transducer			3.0	Ea	1300.00	3900	n		0	\$ 3,900	\$ 5,450	\$ 6,805	
Building Automa	tion SubTo	tal				130430	n		0	\$ 130,430	\$ 182,282	\$ 227,580	
						0	n		0	\$ -	\$ -	\$ -	
General	Frades					0	n		0	\$ -	\$ -	\$-	
Minor repairs and Paint T	ower Struct	ture	6.0	Ea	5000.00	30000	n		0	\$ 30,000	\$ 41,927	\$ 52,345	
Re-work Chiller Housekeer	ping Pad		3.0	Ea	1500.00	4500	n		0	\$ 4,500	\$ 6,289	\$ 7,852	
Re-work Pump Housekeepi	ing Pads		14.0	Ea	750.00	10500	n		0	\$ 10,500	\$ 14,674	\$ 18,321	
Pump Inertia Bases			14.0	Ea	1500.00	21000	n		0	\$ 21,000	\$ 29,349	\$ 36,642	
Exp Tank Inertia Base			1.0	Ea	1500.00	1500	n		0	\$ 1,500	\$ 2,096	\$ 2,617	
General Trades SubTotal						67500	n		0	\$ 67,500	\$ 94,335	\$ 117,777	
						0	n		0	ş -	ş -	ş -	
Water Testing	& Balancing	g				0	n		0	\$-	\$-	\$-	
Pre-testing for Design						0	n		0	\$-	\$-	\$-	
Chillers			4.0	Ea	275.00	1100	n		0	\$ 1,100	\$ 1,537	\$ 1,919	
Cooling Towers			6.0	Ea	210.00	1260	n		0	\$ 1,260	\$ 1,761	\$ 2,198	
Pumps			19.0	Ea	145.00	2755	n		0	\$ 2,755	\$ 3,850	\$ 4,807	
Load Side Check			1.0	Ea	1500.00	1500	n		0	\$ 1,500	\$ 2,096	\$ 2,617	
Post Install Test & Balanc	e - Chillers		3.0	Ea	545.00	1635	n		0	\$ 1,635	\$ 2,285	\$ 2,853	
Cooling Towers			6.0	Ea	420.00	2520	n		0	\$ 2,520	\$ 3,522	\$ 4,397	
Pumps			14.0	Ea	285.00	3990	n		0	\$ 3,990	\$ 5,576	\$ 6,962	
Load Side Check			1.0	Ea	1500.00	1500	n		0	\$ 1,500	\$ 2,096	\$ 2,617	
Test & Balanc	e SubTotal					16260	n		0	\$ 16,260	\$ 22,724	\$ 28,371	
						0	n		0	\$-	\$-	\$-	
Electri	ical					0	n		0	\$-	\$-	\$ -	
Disc & Demo Feeder to Pu	mp		21.0	Ea	984.00	20664	n		0	\$ 20,664	\$ 28,879	\$ 36,055	
Disc & Demo Feeder to Chi	ller		3.0	Ea	9031.00	27093	n		0	\$ 27,093	\$ 37,864	\$ 47,273	
Disc & Demo Feeder to CT			6.0	Ea	4950.00	29700	n		0	\$ 29,700	\$ 41,507	\$ 51,822	
Re-Feed Power to new Chil	ler	750 ton	2.0	Ea	21400.00	42800	n	L	0	\$ 42,800	\$ 59,815	\$ 74,679	
Re-Feed Power to new Coo	ling Tower	25 HP	6.0	Ea	6225.00	37350	n		0	\$ 37,350	\$ 52,198	\$ 65,170	
Provide 120v Circuit for O	utlet or Co	ntrol use	6.0	Ea	900.00	5400	n		0	\$ 5,400	\$ 7,547	\$ 9,422	
Re-Feed Power to Pump	100.00	HP	2.0	Ea	4000.00	8000	n	L	0	\$ 8,000	\$ 11,180	\$ 13,959	
Re-Feed Power to Pump	30.00	HP	4.0	Ea	2250.00	9000	n	L	0	\$ 9,000	\$ 12,578	\$ 15,704	
Re-Feed Power to Pump	25.00	HP	8.0	Ea	2250.00	18000	n		0	\$ 18,000	\$ 25,156	\$ 31,407	
All VFD's furnished in Med	h Scope					0	n		0	\$-	\$-	\$-	
Electrical S	ubTotal					198007	n		0	\$ 198,007	\$ 276,725	\$ 345,491	
						0	n		0	\$-	\$-	\$-	
Insulat	tion					0	n		0	\$-	\$ -	\$ -	
14" Pipe, 2" thick fiberglas	ss w/ asj		400.0	lf	11.05	4420	n	0.267	9212	\$ 13,632	\$ 19,051	\$ 23,785	
14" 90 El, pvc cover w/ in	s insert	-	48.0	ta r-	17.80	854		0.242	1002	\$ 1,856	\$ 2,594	\$ 3,239	
14" lee, pvc cover w/ ins i	nsert		24.0	ta Is	24.50	588		0.356	737	\$ 1,325	\$ 1,852	\$ 2,312	
10" Pipe, 2" thick fiberglas	ss w/ asj		400.0	ut r-	7.65	3060	n	0.229	7901	\$ 10,961	\$ 15,318	\$ 19,124	
10 90 EI, pvc cover w/ in	s insert		42.0	ta r.	10.75	452	n	0.216	782	\$ 1,234	\$ 1,725	\$ 2,153	
14" Pine Ooto	nsert		22.0	16 16	18.25	402		0.333	632	ə 1,033	> 1,444	> 1,803	
14" OD EL O O1C Alum Jack	ci kat		130.0	CI En	4.38	/88		0.174	2/01		⇒ 4,8// ¢ 1.000	v 6,089	
14" Top 0.016 Alum jac	nel H		12.0	Că En	/3.48	882		0.268	420	\$ 1,159	ə 1,620	ې 2,023 د عمر ع	
10" Pipe 0.016 Alum Jacket	u at		12.0	La LE	00.00	/20		0.421	436	401,1 v	¢ 1015	× 2,017 د ع م	
10" 90 El 0.016 Alum Jack	ci kat		120.0	Fa	5.49	419 c10		0.103	250	¢ 2,106	v 2,543 č 1.214	ຸ 3,0/4 ເຊິ່ 1 515	
10" Teo 0.016 Alumiacium	n.c.		12.0	Fa	AE 50	103	-	0.242	121	√ 008 ¢ 212	¢ 1,214	ددر د دم د	
LO ICC, U.UIO AIUM JACKE	SubTatal		4.0		43.30	13264	-	186.0	151	÷ 313	÷ 438	y 54/	
insulation 3	abiotal			I		15564	_ n	1	25/49	גנדיגנ א	y 54,090	v 00,261	

	ORIGINA	TING OFFIC	CE	DATE SUB	VIITTED	10/17/2016		PROJECT N	0.	CONTRACT NO.	
OSBORN	Osborn I	Engineerin	g								
ESTIMATE	PROJECT A	ND CITY						PURPOSE		STUDY	
WORKSHEET	Cleveland	Hopkins In	ternational	Airport				Opinion of	Probable Constru	iction Cost	
	Chilled W	ater Plant S	tudy & Crite	eria Design				ITEM			
	Cleveland	l, Ohio									
ESTIMATE VALID TO:		ESTIMATE	D BY:	LABOR RATI	E:	PSLCF					
06/30/17		JHP		\$ 75.00	/HR	1.15		SHEET	NO. 1	OF 1	
			QUA	NTITY	м	ATERIAL		LABOR			
DESCRIPTION	OF WORK		NO.	UNIT	PER		ОТ	HRS PER	Labor Hrs		
			UNITS	MEAS.	UNIT	SUBTOTAL	(y/n)	UNIT	SUBTOTAL		
Chiller I	Drop					0	n		0		
Chilled Water						0	n		0		
8" CS Pipe, Sch 40			30.0	UF	69.90	2097	n	0.828	24.84		
8" 90 El			6.0	EA	200.00	1200	n	6.400	38.40		
8" SS Braided Flex Conn			2.0	EA	670	1340	n	3.200	6.40		
8" 150# WN Flange			10.0	EA	35.00	350	n	5.300	53.00		
3/4" TOL			6.0	EA	15.00	90	n	1.000	6.00		
Adjustable Angle Thermon	neter		2.0	EA	30.00	60	n	0.750	1.50		
8" Flow Meter			1.0	EA	3500.00	3500	n	8.000	8.00		
TCC Temp Sensor			2.0	EA	5.00	10	n	0.750	1.50		
8" B-Fly Valve			2.0	EA	465.00	930	n	5.330	10.66		
8" Motor Op B-Fly Valve			1.0	EA	790.00	790	n	7.250	7.25		
Subtotal						10367	n		157.55		
Condenser Water						0	n		0		
10" CS Pipe, Sch 40			30.0	lF	90.80	2724	n	1.000	30.00		
10" 90 El			6.0	EA	400.00	2400	n	8.000	48.00		
10" SS Braided Flex Conn,	Flg x Flg		2.0	EA	735.00	1470	n	3.500	7.00		
10" 150# Weld Flange			10.0	EA	42.00	420	n	6.960	69.60		
3/4" TOL			6.0	EA	25.00	150	n	1.250	7.50		
Adjustable Angle Thermon	neter		2.0	EA	75.00	150	n	0.750	1.50		
10" Flow Meter			1.0	EA	5000.00	5000	n	12.000	12.00		
TCC Sensor			2.0	EA	10.00	20	n	1.250	2.50		
10" B-Fly Valve			2.0	EA	559.00	1118	n	6.000	12.00		
10" Motor Op B-Fly Valve			1.0	EA	1100.00	1100	n	8.000	8.00		
						0	n		0.00		
Chiller Drop Sub-Total						14552	n		198.10		
						0	n		0		
Secondary CW Pump (2	12" Suc x 10)" Disch)				0	n		0		
12" 90 ell			2.0	EA	590.00	1180	n	9.600	19.20		
12" Lug Body B-Fly Valve			2.0	EA	1525.00	3050	n	8.000	16.00		
12" Tri-Duty Valve			1.0	EA	7675.00	7675	n	11.400	11.40		
12" SS Braided Flex, Flg x I	Flg		2.0	EA	950.00	1900	n	4.000	8.00		
12 x 10 Conc Weld Reduce	r		1.0	EA	398.00	398	n	8.000	8.00		
12" 150# WN Flange			8.0	EA	105.00	840	n	8.250	66.00		
10" Same			1.0	EA	82.00	82	n	6.960	6.96		
12" Suction Diffuser			1.0	EA	5100.00	5100	n	14.000	14.00		
Pressure Gauge			1.0	EA	75.00	75	n	0.750	0.75		
12" CS Pipe, Sch 40			21.0	lF	106.91	2245	n	1.260	26.46		
Subtotal						22545	n		176.77		
						0	n		0		
Primary CH	W Pump					0	n		0		
10" Lug Body B-Fly Valve			2.0	EA	1100.00	2200	n	6.000	12.00		
10" Tri-Duty Valve			1.0	EA	4250.00	4250	n	10.900	10.90		
10" SS Braided Flex, Flg x I	Flg		2.0	EA	625.00	1250	n	2.670	5.34		
10 x 8 Conc Weld Reducer			1.0	EA	377.00	377	n	8.000	8.00		
10" 150# WN Flange			8.0	EA	82.00	656	n	6.960	55.68		
8" Same			1.0	EA	75.00	75	n	5.300	5.30		
10" Suction Diffuser			1.0	EA	3875.00	3875	n	11.000	11.00		
Pressure Gauge			1.0	EA	75.00	75	n	0.750	0.75		
10" CS Pipe, Sch 40			21.0	UF	90.80	1907	n	1.000	21.00		
10" 90 El			2.0	EA	418.40	837	n	8.000	16.00		
Subtotal						15502	n		145.97		
						0	n		0		
Cooling Tow	er Piping					0	n		0		
10" CS Pipe, Sch 40			42.0	UF	90.80	3814	n	1.000	42.00		
12" CS Pipe, Sch 40			21.0	lF	106.91	2245	n	1.260	26.46		
1-1/2" Pipe, L Copper			20.0	UF	14.35	287	n	0.154	3.08		
10" 90 El			6.0	EA	418.40	2510	n	8.000	48.00		
12" 90 El			1.0	EA	590.00	590	n	9.600	9.60		
1-1/2" 90 El			3.0	EA	40.50	122	n	0.615	1.85		
12" Lug Body B-Fly Valve -	150#		1.0	EA	1525.00	1525	n	8.000	8.00		
10" Lug Body B-Fly Valve -	150#		2.0	EA	1100.00	2200	n	6.000	12.00		
1-1/2" Ball Valve			1.0	EA	70.00	70	n	0.700	0.70		
12" Flange, WN - 150#			3.0	EA	105.00	315	n	8.250	24.75		
10" Flange, WN - 150#			6.0	EA	82.00	492	n	6.960	41.76		
1-1/2" Union Brass			1.0	EA	185.00	185	n	1.060	1.06		
Subtotal						14355	n		219.26		

